Smart Polymers Market Projected to Grow Impressively Through 2028

Written by varun  »  Updated on: November 01st, 2024

The Global Smart Polymers Market is projected to grow at an impressive rate through 2028. Smart polymers and responsive materials are frequently utilized to create novel smart devices, sensors, and actuators; these materials' functions stem from their capacity to react to external stimuli in a way that can be easily observed.

 The triggering stimuli can be of a physical (temperature, light, electric or magnetic field, mechanical stress, etc.), chemical (pH, ligands, etc.), or biological (enzymes, etc.) kind, depending on the responsive material under study.

The design of the meso- or macroscopic arrangement of the constituent parts, as seen in metamaterials, can be used to achieve this responsiveness, or responsive materials themselves can be used, whose responsiveness is derived from the chemistry underpinning its microstructure.

Browse over XX market data Figures spread through XX Pages and an in-depth TOC on the "Smart Polymers Market” @ https://www.techsciresearch.com/report/global-smart-polymers-market/2590.html 

A responsive material can be created when the responsiveness at the molecular level is well-ordered, and the nanoscale response is collectively detected at the macroscale. By highlighting the key traits, responsive mechanisms, and properties of smart polymers and by offering a mechanical modeling perspective on both the molecular and continuum scale levels, we examine the vast field of responsive polymers in this article. Our goal is to give a thorough review of the key characteristics and modeling elements of the most widely used smart polymers.

Active materials' quantitative mechanical description is essential to their creation and application because it makes it possible to manipulate the microstructure of the materials to achieve certain functionalities and to construct cutting-edge devices. Various types of smart polymers is thermo-responsive polymers, which can undergo a reversible phase transition in response to changes in temperature.

For example, poly(N-isopropylacrylamide) (PNIPAAm) is a well-known thermo-responsive polymer that undergoes a sharp transition from a hydrophilic to a hydrophobic state when the temperature is raised above its lower critical solution temperature (LCST). This transition can be utilized for various applications, such as drug delivery and tissue engineering.

Low-Cost Substitute for Metal

Engineering plastics outperform traditional metal structures in many ways. With regard to both technical and economic development, the range of applications for these intelligent plastic solutions goes far beyond automotive engineering and opens up enormous potential for the solar, construction, and water industries. Smart Polymers' electrical conductivity property is anticipated to support their expanding use in touchscreen displays, electronic transistors, and light-emitting diodes, which will drive the market.

The substance has a high rate of white light absorption, which is advantageous to produce photovoltaic cells. The substance is also used to make microchips, which are a necessary part of most electronic equipment. Companies that produce materials have begun to create conductive inks, which are used to print circuits from the material and conduct electricity. As a result, demand for the product should increase for the projected period due to the potential it will offer the electronic sector. The smart polymers are pH-responsive polymers, which can undergo a reversible change in their properties in response to changes in pH.

For example, poly(acrylic acid) (PAA) is a pH-responsive polymer that can swell or shrink depending on the pH of the surrounding environment. This property can be utilized for various applications, such as controlled release of drugs and sensors.

This property helps in substituting metals and can also detect elements which may change the pH. The automotive and aerospace industries are also adopting smart polymers in various applications. Smart polymers can be used to design self-healing materials that can repair themselves when damaged. This property can improve the durability and reliability of vehicles and aircraft and reduce maintenance costs. The electronics industry is another sector that is exploring the use of smart polymers in various applications. Smart polymers can be used to design sensors that can detect specific stimuli, such as changes in temperature or humidity, and respond by changing their physical or electrical properties. This property of smart polymers has led to the development of several commercial products, including humidity sensors and temperature sensors.

Download Free Sample Report

Customers can also request for 10% free customization on this report

Growing Technological Advancement for Sustainable Development

Smart polymer materials have qualities and functions that are either novel or improved when compared to typical materials, for their application, exceptional performance is essential. A subclass of sophisticated materials known as smart materials exhibits dynamic features in reaction to outside stimuli. High-performance functional nanomaterial development is crucial for enabling and supporting the evolution of materials to keep up with the extraordinarily quick technological evolution.

Despite the fantastic possibilities provided by smart polymer materials, sustainability and circularity have emerged as key factors in the creation of new materials. The difficulties in producing materials with enhanced or novel functions that use renewable raw materials and circular design principles at the same time.

The objective of this Special Issue is to showcase the most recent research in the rapidly developing field of dual-objective polymer materials with cutting-edge and sustainable features. Contributions on such materials in many application sectors will be gathered in the issue are sustainable smart textile materials, advanced polymer materials for sustainable energy applications, biodegradable packaging materials with smart functionalities, and sustainable advanced materials in the transport sector.

Recent Developments

  • In 2021, DSM Engineering Materials and Chroma Color Corporation announced a collaboration to develop smart polymer-based colorants for the healthcare and medical device markets. The collaboration combines DSM's expertise in medical-grade materials with Chroma Color's colorant technology to produce high-quality smart polymer-based colorants
  • In 2020, Stratasys Ltd. launched a line of smart polymer-based 3D printing materials called "BioMimics". These materials mimic the properties of human tissues and can be used to create realistic models for medical training and simulation. The materials are also suitable for designing and prototyping medical devices.
  • In 2020, BASF SE launched a new smart polymer product called "Elastosense". The product is a conductive polymer that can sense changes in pressure and temperature, making it suitable for use in various applications, such as automotive and consumer electronics.
  • In 2019, Derma Sciences Inc. launched a line of smart hydrogel-based wound dressings that use pH-responsive polymers to provide a moist wound healing environment.
  • In 2019, Menicon Co. Ltd. launched a line of smart polymer-based contact lenses that use stimuli-responsive materials to change shape in response to eye movements.

You may also read:

Forklift Market Valued at USD 58 Billion in 2022 Growth Insights and Forecast

Tire Pressure Monitoring System MarketProjected to Grow at 8% CAGR through 2028 Insights and Analysis

Agriculture Tire Market Investment Insights into the Growing Sector USD 7 Billion Opportunities

All Terrain Vehicle MarketGrowth Trends and Opportunities in 2022 Size and Scope

Off-Road Vehicle Market Share Analyzing Trends and Future Projections

Table of Content-Smart Polymers Market 

  1. Product Overview

  1. Research Methodology
  2. Executive Summary
  3. Voice of Customer

4.1. Product Quality

4.2. Factors Influencing Purchase Decision

  1. Global Smart Polymers Market Outlook 

5.1. Market Size & Forecast

5.1.1. By Value

5.2. Market Share & Forecast

5.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

5.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

5.2.3. By Company

5.2.4. By Region

5.3. Market Attractiveness Index (By Type & By Region)

  1. Asia-Pacific Smart Polymers Market Outlook

6.1. Market Size & Forecast

6.1.1. By Value

6.2. Market Share & Forecast

6.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

6.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

6.2.3. By Country (China, Japan, India, South Korea, Australia & Rest of Asia Pacific)

6.2.3.1. China Smart Polymers Market Outlook

6.2.3.1.1. Market Size & Forecast

6.2.3.1.1.1. By Value

6.2.3.1.2. Market Share & Forecast

6.2.3.1.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

6.2.3.1.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

6.2.3.2. India Smart Polymers Market Outlook

6.2.3.2.1. Market Size & Forecast

6.2.3.2.1.1. By Value

6.2.3.2.2. Market Share & Forecast

6.2.3.2.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

6.2.3.2.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

6.2.3.3. Japan Smart Polymers Market Outlook

6.2.3.3.1. Market Size & Forecast

6.2.3.3.1.1. By Value

6.2.3.3.2. Market Share & Forecast

6.2.3.3.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

6.2.3.3.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

6.2.3.4. Australia Smart Polymers Market Outlook

6.2.3.4.1. Market Size & Forecast

6.2.3.4.1.1. By Value

6.2.3.4.2. Market Share & Forecast

6.2.3.4.2.1. By Type (Physical Stimuli-Responsive Polymer, Chemical Stimuli-Responsive Polymer & Biological Stimuli-Responsive Polymer)

6.2.3.4.2.2. By End-Use Industry (Biomedical and Biotechnology, Textile, Electrical and Electronics, Automotive & Others)

6.2.3.5. South Korea Smart Polymers Market Outlook

6.2.3.5.1. Market Size & Forecast

6.2.3.5.1.1. By Value

6.2.3.5.2. Market Share & Forecast


Disclaimer:

We do not claim ownership of any content, links or images featured on this post unless explicitly stated. If you believe any content or images infringes on your copyright, please contact us immediately for removal ([email protected]). Please note that content published under our account may be sponsored or contributed by guest authors. We assume no responsibility for the accuracy or originality of such content. We hold no responsibilty of content and images published as ours is a publishers platform. Mail us for any query and we will remove that content/image immediately.